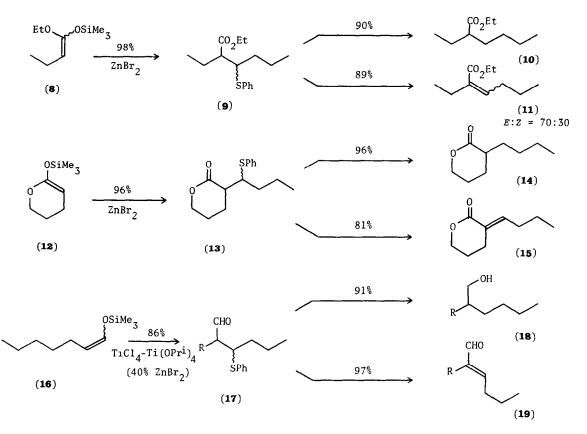
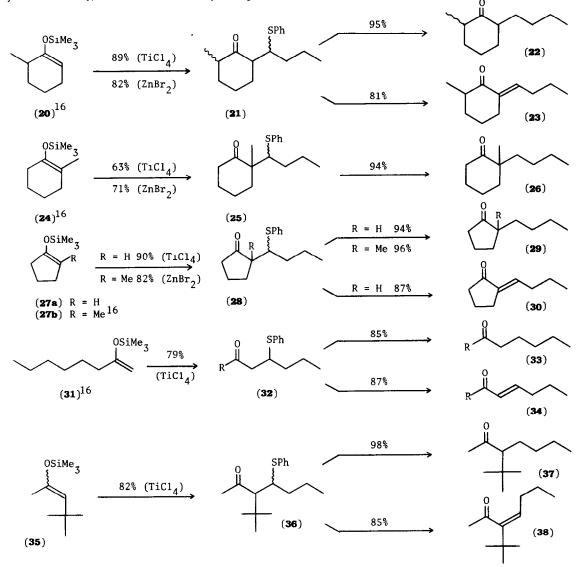

α -ALKYLATION AND α -ALKYLIDENATION OF CARBONYL COMPOUNDS: LEWIS ACID-PROMOTED PHENYLTHIOALKYLATION OF o-SILYLATED ENOLATES¹

Ian Paterson* and Ian Fleming

(University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW, England)


summary: The O-silylated enolates of ketones, aldehydes, esters, and lactones can be phenylthioalkylated in the presence of Lewis acids; reductive or oxidative sulphur-removal gives the regiospecifically α -alkylated or alkylidenated carbonyl compounds.

The regiospecific alkylation of lithium enolates is often restricted to reactive alkyl halides such as methyl modified and allylic or benzylic halides.² Alternative methods using enolate equivalents³ are generally restricted to aldehydes and ketones and, along with quaternary ammonium enolates,⁴ are best suited for alkylation at the less-substituted side of unsymmetrical ketones. We now report that simple primary alkyl groups, *including neopentyl*, may be easily introduced by Lewis acid-promoted phenylthnoalkylation of *O*-silylated enolates⁷ using α -chloroalkyl phenyl sulphides (2), followed by Raney nickel desulphurisation (e.g. $1 \rightarrow 3 \rightarrow 4$);^{5,6} this is an extension of our earlier work on phenylthnomethylation ($1 + 3 \rightarrow 4$, R = H).⁸ As in the earlier work, the sulphur may also be removed oxidatively using sodium metaperiodate (e.g. $3 \rightarrow 5$), to give, effectively, the *E*-product (5) of a directed aldol condensation.⁹



The α -chloroalkyl phenyl sulphides (2), which serve as both alkyl halide and aldehyde equivalents, were prepared in two steps $(\mathbf{6} \rightarrow \mathbf{7} \rightarrow \mathbf{2})$ from the corresponding alkyl bromide, generally in better than 90% yield: the halide (**6**) was converted to the alkyl phenyl sulphide (**7**) (NaSPh, EtOH, 20°), which was then chlorinated (*N*-chlorosuccinimide, CCl₄, 20°, 6 h), and the product (**2**) used directly¹⁰ after filtration and evaporation of the solvent.

In addition to the reactions on the O-silylated enolate (1) of cyclohexanone, we have also carried out the n-butylation and n-butylidenation sequences on the O-silylated enolates of a range of carbonyl compounds using α -chloro-n-butyl phenyl sulphide (2, R = Prⁿ) as the electrophile, as summarised in diagrams 8 to 38. The phenylthicalkylation reaction was successful with the O-silylated enolates of an ester (8), a lactone (12), an aldehyde (16), and a range of symmetrical (1 and 27a) and unsymmetrical (20, 24, 27b, 31, and 34) ketones.

Titanium tetrachloride and zinc bromide are the most effective Lewis acids; but which is better depends upon the substrate. With the ester- and lactone-derived O-silylated enolates (8 and 12), ZnBr_2 was clearly the best Lewis acid $(\text{CH}_2\text{Cl}_2, 20^\circ, 15 \text{ min})$, as we had previously found for phenylthiomethylation.⁸ For the aldehyde-derived O-silylated enolate (16), a l:1 mixture of TiCl₄ and Ti(OPr¹)₄ was best $(\text{CH}_2\text{Cl}_2, -78^\circ, 1 \text{ h})$, zinc bromide giving a lower yield. For the O-silylated enolates of ketones (1, 20, 24, 27, 31, and 35) both ZnBr_2 (CH₂Cl₂, 20°, 1 h) and TiCl₄ (CH₂Cl₂, -23°, 1.5 h) were successful. ZnBr₂ has the advantages of mildness, catalytic use, and ease of operation, but TiCl₄ may occasionally be superior in being more apt to give regiospecific alkylation.⁶ Both Lewis acids were successful, however, in promoting regiospecific¹¹ phenylthiobutylation of the two isomeric O-silylated enolates of 2-methylcyclohexanone (20 + 21 and 24 + 25). In contrast, the corresponding lithium enolates are not easily n-butylated without competing equilibration.¹² Our method is particularly effective for alkylation at the more-substituted side of unsymmetrical ketones (24, 27b, and 35), complementing the alternative methods;^{3,4} it also works in the regiospecific alkylation of hindered enolates,¹³ such as those having an adjacent quaternary carbon as in 35. Finally, the ease, efficiency, and high stereoselectivity¹⁴ of the oxidative removal of sulphur makes the reactions described here attractive alternatives to existing syntheses of α,β -unsaturated carbonyl compounds.^{9,15}

Typically, for the $ZnBr_2$ -phenylthioalkylation procedure, a catalytic amount (*ca.* 25 mg) of powdered anhydrous $ZnBr_2$ was added to a solution of the α -chloroalkyl phenyl sulphide (6 mmol) and the *O*-silylated enolate (5 mmol) in dry CH_2Cl_2 (10 ml) at room temperature, and the mixture shaken every 5-10 min. After 15 min (esters and lactones) or 1 h (ketones), the solvent was simply evaporated and the residue chromatographed on silica gel to give the α -phenylthioalkyl

ketone, ester, or lactone directly. TiCl_4 was used in the same way as described for phenylthiomethylation,⁸ except in the case of aldehydes (17), where the reactants were treated with a preformed mixture of TiCl_4 -Ti(OPr^i)₄(1 equivalent of each) in CH_2Cl_2 (-78°, 1 h) and worked up in the usual way.⁸

Reductive sulphur removal was carried out with W-2 Raney nickel¹⁷ (Me₂CO-EtOH 9:1, 20°, 0.5-2 h) as described previously.⁸ In the case of the aldehyde (17), reduction to the primary alcohol (18) occurred under these conditions. Oxidative sulphur removal to the α,β -unsaturated carbonyl compound was carried out by treatment with sodium metaperiodate¹⁸ followed by heating, as necessary. Typically, the α -phenylthioalkyl carbonyl compound (1 mmol) was stirred in the dark with NaIO₄ (1 mmol) in MeOH-H₂O (9:1, 10 ml) for 16 h. The reaction mixture was poured into water (15 ml) and extracted repeatedly with CH₂Cl₂. The organic phase was dried and evaporated *in vacuo* to give, usually, a mixture of sulphoxide and eliminated product (in the cases $3 \rightarrow 5$ R = Bu^t, $9 \rightarrow 11$, and $36 \rightarrow 38$, the sulphoxide was isolated unscathed). The crude mixture was warmed in CCl₄ (1 ml) at 60° for 1-48 h; chromatography on silica gel then gave the unsaturated carbonyl compounds.

NOTES and REFERENCES

¹Reprints of this paper will not be available.

- ²G. Stork, Pure Appl. Chem., **43**, 553 (1975).
- ³G. Stork and S. R. Dowd, *J. Amer. Chem. Soc.*, **85**, 2178 (1963); M. E. Jung, P. A. Blair, and J. A. Lowe, *Tetrahedron Letters*, 1439 (1976); E. J. Corey and D. Enders, *Chem. Ber.*, **111**, 1337 (1978).
- ⁴I. Kuwajima and E. Nakamura, J. Amer. Chem. Soc., **97**, 3257 (1975).
- ⁵For the direct alkylation of O-silylated enolates with t-alkyl halides, see: T. H. Chan, I. Paterson, and J. Pinsonnault, *Tetrahedron Letters*, 4183 (1977) and M. T. Reetz and W. F. Maier, Angew. Chem. Internat. Edn., **17**, 48 (1978).
- ⁶For the direct alkylation of O-silylated enolates with some reactive primary and secondary alkyl halides in the presence of Lewis acids, see I. Paterson, *Tetrahedron Letters*, in press.

⁷J. K. Rasmussen, *Synthesis*, 91 (1977).

- ⁸I. Paterson and I. Fleming, *Tetrahedron Letters*, 993 and 995 (1979).
- 9 G. Wittig and H. Reiff, Angew. Chem. Internat. Edn., 7, 7 (1968).
- ¹⁰The α -chloroalkyl phenyl sulphides (2) may be stored for several months under N₂ at -15° without significant deterioration.
- ¹¹In detail, the amount of regionsomer produced was proportional to the amount of the corresponding silyl enol ether present in the starting material.¹⁶ The major regionsomeric α -phenylthioalkyl ketone was generally separated from the minor by column chromatography.
- ¹²I. J. Borowitz, E. W. R. Caspar, R. K. Crouch, and K. C. Yee, J. Org. Chem., **37**, 3873 (1972); it can be done, however, in NH₃-THF: E. S. Binkley and C. H. Heathcock, *ibid*, **40**, 2156 (1975).
- ¹³R. K. Boeckman, J. Org. Chem., **38**, 4450 (1973).
- ¹⁴Presumably this results from the reversibility of benzenesulphenic acid elimination. In the case of $\mathbf{3} \rightarrow \mathbf{5}$ for R = Bu^t, equilibration to the thermodynamically favoured *E*-isomer is slow enough that the kinetic formation of the Z-isomer and its subsequent isomerisation to the *E*-isomer can be followed by ¹H-NMR.
- ¹⁵E. J. Corey, D. Enders, and M. G. Bock, *Tetrahedron Letters*, 7 (1976) and references therein.
- ¹⁶20:24 in the proportion 99:1; 24:20 88.12; 27b:regioisomer 93:7; 31:regioisomer 85:15.
- ¹⁷R. Mozingo, Org. Synth. Coll. Vol. III, 181 (1955).
- ¹⁸B. M. Trost and T. N. Salzmann, J. Amer. Chem. Soc., 95, 6840 (1973).

(Received in UK 26 March 1979)